Абелевы интегралы - definitie. Wat is Абелевы интегралы
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Абелевы интегралы - definitie

Интеграл Абеля; Абелевы интегралы

Абелевы интегралы         

интегралы от алгебраических функций (См. Алгебраическая функция). Как правило, А. и. не выражаются через элементарные функции. Названы по имени Н. Абеля (См. Абель), открывшего их основные свойства. Теория А. и. - один из важных разделов теории алгебраических функций. Частные случаи А. и.: Эллиптические интегралы, Гиперэллиптические интегралы.

Эллиптические интегралы         

интегралы вида

,

где R (x, у) - рациональная функция х и , а Р (х) - многочлен 3-й или 4-й степени без кратных корней.

Под Э. и. первого рода понимают интеграл

(1)

под Э. и. второго рода - интеграл

где k - модуль Э. и., 0 < k < 1 (х = sin φ, t = sin α. Интегралы в левых частях равенств (1) и (2) называются Э. и. в нормальной форме Якоби, интегралы в правых частях - Э. и. в нормальной форме Лежандра. При х = 1 или φ = π/2 Э. и называются полными и обозначаются, соответственно, через

и

Своё назв. Э. и. получили в связи с задачей вычисления длины дуги эллипса и = a sin α, v = b cos α(a < b). Длина дуги эллипса выражается формулой

где - эксцентриситет эллипса. Длина дуги четверти эллипса равна E (k). Функции, обратные Э. и., называются эллиптическими функциями (См. Эллиптические функции).

Эллиптический интеграл         
Эллипти́ческий интегра́л — некоторая функция f над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:

Wikipedia

Абелев интеграл

А́белев интеграл — интеграл от алгебраической функции вида

z 0 z 1 R ( z , w ) d z , {\displaystyle \int \limits _{z_{0}}^{z_{1}}R(z,w)\,dz,}

где R ( z , w ) {\displaystyle R(z,w)} — любая рациональная функция от переменных z {\displaystyle z} и w , {\displaystyle w,} связанных алгебраическим уравнением

F ( z , w ) = a 0 ( z ) w n + a 1 ( z ) w n 1 + + a n ( z ) = 0 {\displaystyle F(z,w)=a_{0}(z)w^{n}+a_{1}(z)w^{n-1}+\ldots +a_{n}(z)=0}

с целыми рациональными по z {\displaystyle z} коэффициентами a j ( z ) ,   j = 0 , 1 , , n . {\displaystyle a_{j}(z),\ j=0,1,\dots ,n.} Этому уравнению соответствует компактная риманова поверхность F , {\displaystyle F,} n {\displaystyle n} -листно накрывающая сферу Римана, на которой z , w , {\displaystyle z,w,} а следовательно и R ( z , w ) , {\displaystyle R(z,w),} рассматриваемые как функции точки поверхности F , {\displaystyle F,} однозначны.

Wat is <font color="red">А</font>белевы интегр<font color="red">а</font>лы - definition